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Abstract
In this paper, we investigate the asymptotic behavior of the Benjamin–Bona–
Mahony equation in unbounded domains. We prove the existence of a global
attractor when the equation is defined in a three-dimensional channel. The
asymptotic compactness of the solution operator is obtained by the uniform
estimates on the tails of solutions.
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Mathematics Subject Classification: 35B40, 35B41, 37L30

1. Introduction

In this paper, we investigate the asymptotic behavior of solutions of the Benjamin–Bona–
Mahony (BBM) equation defined in an unbounded domain. Let Q = � × R where � is a
bounded open subset of R2. Consider the Benjamin–Bona–Mahony equation defined on Q:

ut − �ut − ν�u + ∇ · �F(u) = g(x), x ∈ Q, t > 0,

where ν is a positive constant, g ∈ L2(Q) is given and �F is a nonlinear vector function
satisfying some growth conditions.

The BBM equation was proposed in [12] as a model for propagation of long waves which
incorporates nonlinear dispersive and dissipative effects. The existence and uniqueness of
solutions were studied extensively in the literature (see, e.g., [5, 6, 12–14, 16, 19, 24, 25]
and the references therein). If the domain is bounded, the existence and regularity of global
attractors of the equation were investigated in [4, 15, 17, 39, 40, 43]. If the domain is the
entire space R3, the existence of a local attractor for the equation was proved by the authors
of [34] under the condition that the external term g is sufficiently small. In this paper, we will
establish the existence of a global attractor for the BBM equation for any g ∈ L2(Q) when
the domain Q is the three-dimensional channel.
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Note that the unboundedness of the domain Q introduces a major difficulty for proving
the existence of a global attractor because Sobolev embeddings are no longer compact in this
case, and hence the asymptotic compactness of the solution operator cannot be obtained by a
standard method. An effective way to overcome this difficulty is the energy equation method
which was first introduced by Ball in [8, 9] and then employed by several authors to prove the
asymptotic compactness of nonlinear dissipative equations in unbounded domains (see, e.g.,
[18, 20, 22, 27, 28, 32, 44] and the references therein). In this paper, we will use the techniques
of uniform estimates on the tails of solutions to establish the asymptotic compactness of the
BBM equation in the unbounded channel. This idea was developed in [38] for proving the
asymptotic compactness of the reaction–diffusion equation in unbounded domains, and later
used by several authors for partial differential equations in [1, 2, 3, 26, 29, 31, 35], and for
lattice ordinary differential equations in [10, 11, 23, 37, 41, 42, 45].

This paper is organized as follows. In the next section, we derive uniform estimates on
solutions of the BBM equation in the three-dimensional channel when t → ∞, which are
necessary for proving the existence of a bounded absorbing set and the asymptotic compactness
of the equation. In section 3, we first establish the asymptotic compactness of the solution
operator by uniform estimates on the tails of solutions, and then prove the existence of a global
attractor.

In what follows, we adopt the following notations. We denote by ‖·‖ and (·, ·) the norm
and the inner product of L2(Q), respectively. The norm of any Banach space X is written
as ‖·‖X. We also use ‖·‖p to denote the norm of Lp(Q). The letter c is a generic positive
constant which may change its value from line to line.

2. Uniform estimates of solutions

In this section, we derive uniform estimates on solutions of the BBM equation in three-
dimensional channels for large time. We also establish the uniform estimates on the tails of
the solutions for large space variables.

Consider the following problem defined on Q = � × R, where � is a bounded open
subset of R2,

ut − �ut − ν�u + ∇ · �F(u) = g(x), x ∈ Q, t > 0, (2.1)

with the boundary condition

u|∂Q = 0, t > 0, (2.2)

and the initial condition

u(x, 0) = u0(x), x ∈ Q, (2.3)

where ν is a positive constant, g ∈ L2(Q) is given, and �F is a nonlinear vector function:
�F(s) = (F1(s), F2(s), F3(s)) for s ∈ R. Throughout this paper, we assume that Fk (k =
1, 2, 3) is a smooth function satisfying

Fk(0) = 0, |F ′
k(s)| � c1 + c2|s|m, s ∈ R, (2.4)

where 0 � m < 2. Denote by

Gk(s) =
∫ s

0
Fk(t) dt and fk(s) = F ′

k(s).

Then it follows from (2.4) that, for k = 1, 2, 3,

|fk(s)| � c1 + c2|s|m, |Fk(s)| � c1|s| + c2|s|m+1 and |Gk(s)| � c1|s|2 + c2|s|m+2.

(2.5)
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It is standard to show that, under assumption (2.4), problem (2.1)–(2.3) is well-posed
in H 1

0 (Q) (see, e.g., [5, 34]), i.e., for every u0 ∈ H 1
0 (Q), problem (2.1)–(2.3) has a unique

solution u such that u ∈ C0
(
[0,∞),H 1

0 (Q)
)

and du
dt

∈ L∞(
0, T ;H 1

0 (Q)
)

for every T > 0.
Hence, we can associate a semigroup {S(t)}t�0 with problem (2.1)–(2.3) such that for every
t � 0, S(t) maps H 1

0 (Q) into itself and S(t)u0 = u(t), the solution of system (2.1)–(2.3).
Furthermore, the solution is continuous with respect to the initial condition, which implies
that {S(t)}t�0 is a continuous dynamical system on H 1

0 (Q). In this paper, we will study the
asymptotic behavior of {S(t)}t�0 as t → ∞. We start with the uniform estimates in H 1

0 (Q).

Lemma 2.1. Suppose g ∈ L2(Q). Then there exists a positive constant M, depending only on
the data (ν,Q, g), such that, for any fixed R > 0, the solution u of problem (2.1)–(2.3) with
‖u0‖H 1

0 (Q) � R satisfies

‖u(t)‖H 1
0 (Q) � M, ∀ t � T ,

where T depends on the data (ν,Q, g) and R.

In this paper, we will frequently use the following Poincare inequality:

‖u‖ � λ‖∇u‖, ∀ u ∈ H 1
0 (Q), (2.6)

where λ is a positive constant.

Proof. Taking the inner product of (2.1) with u in L2(Q), we find that
1

2

d

dt
(‖u‖2 + ‖∇u‖2) + ν‖∇u‖2 +

∫
Q

(∇ · �F(u))u dx = (g, u). (2.7)

Let �G be the antiderivative of �F , i.e.,

�G(s) =
∫ s

0

�F(t) dt, s ∈ R. (2.8)

Then we have ∇ · �G(u) = �F(u) · ∇u and hence∫
Q

(∇ · �F(u))u dx = −
∫

Q

�F(u) · ∇u dx = −
∫

Q

∇ · �G(u) dx = 0. (2.9)

By (2.6) we find that

ν‖∇u‖2 = ν

2
‖∇u‖2 +

ν

2
‖∇u‖2 � ν

2
‖∇u‖ +

ν

2λ2
‖u‖2. (2.10)

Note that the right-hand side of (2.7) is bounded by

|(g, u)| � ‖g‖‖u‖ � ν

4λ2
‖u‖2 +

λ2

ν
‖g‖2. (2.11)

It follows from (2.7)–(2.11) that

d

dt
(‖u‖2 + ‖∇u‖2) + ν‖∇u‖2 +

ν

2λ2
‖u‖2 � 2λ2

ν
‖g‖2.

Let α = min
(
ν, ν

2λ2

)
. We find that, for all t � 0,

d

dt
‖u‖2

H 1 + α‖u‖2
H 1 � 2λ2

ν
‖g‖2.

Then by Gronwall’s lemma we have that

‖u(t)‖2
H 1 � e−αt‖u0‖2

H 1 +
2λ2

αν
‖g‖2 � e−αtR2 +

2λ2

αν
‖g‖2 � 3λ2

αν
‖g‖2, ∀ t � T ,

where T = − 1
α

ln
(

λ2‖g‖2

R2αν

)
. This completes the proof. �
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Lemma 2.2. Suppose g ∈ L2(Q) and (2.4) is satisfied. Then there exists M1, depending only
on the data (ν,Q, g), such that, for any fixed R > 0, the solution u of problem (2.1)–(2.3)
with ‖u0‖H 1

0 (Q) � R satisfies∥∥∥∥du

dt

∥∥∥∥
H 1

0 (Q)

� M1, ∀ t � T1,

where T1 depends on (ν,Q, g) and R.

Proof. Taking the inner product of (2.1) with ut in L2(Q) we get that

‖ut‖2 + ‖∇ut‖2 + ν(∇u,∇ut ) +
∫

Q

(∇ · �F(u))ut dx = (g, ut ). (2.12)

Note that

|(g, ut )| � ‖g‖‖ut‖ � 1
2‖ut‖2 + 1

2‖g‖2. (2.13)

By lemma 2.1 we find that, for t � T ,

ν|(∇u,∇ut )| � ν‖∇u‖‖∇ut‖ � 1
4‖∇ut‖2 + ν2‖∇u‖2 � 1

4‖∇ut‖2 + ν2M. (2.14)

By (2.5) and lemma 2.1, we also have the estimates∣∣∣∣
∫

Q

(∇ · �F(u))ut dx

∣∣∣∣ =
∣∣∣∣
∫

Q

�F(u) · ∇ut dx

∣∣∣∣
� c1

∫
Q

|u||∇ut | dx + c2

∫
Q

|u|m+1|∇ut | dx

� 1

4
‖∇ut‖2 + c‖u‖2 + c

∫
Q

|u|2m+2 dx

� 1

4
‖∇ut‖2 + c‖u‖2 + c‖u‖2m+2

2m+2

� 1

4
‖∇ut‖2 + c‖u‖2 + c‖u‖2m+2

H 1 � 1

4
‖∇ut‖2 + c. (2.15)

Here we used the embedding of H 1(Q) ↪→ Lp(Q) with 2 � p � 6, i.e.,

‖u‖p � c(p)‖u‖H 1
0
, ∀ u ∈ H 1

0 (Q), 2 � p � 6,

where c(p) is a positive constant depending on p. By (2.12)–(2.15) we obtain
1
2‖ut‖2 + 1

2‖∇ut‖2 � c, ∀ t � T ,

which implies lemma 2.2. The proof is complete. �
Next we derive uniform estimates on the tails of solutions, which are crucial for proving

the asymptotic compactness of the solution operator. To this end, for every x ∈ Q = � × R,
we will write x = (x1, x2, x3) where (x1, x2) ∈ � and x3 ∈ R. Given k > 0, denote by Qk =
{(x1, x2, x3) ∈ Q: |x3| < k}, and Q\Qk the complement of Qk .

Note that (2.5) and (2.8) imply that

| �G(s)| � c1|s|2 + c2|s|m+2, for s ∈ R, (2.16)

which is useful for deriving uniform estimates on the tails of solutions.

Lemma 2.3. Suppose g ∈ L2(Q) and (2.4) is satisfied. Then given ε > 0 and R > 0,
there exist positive constants T2 and k0 such that the solution u of problem (2.1)–(2.3) with
‖u0‖H 1

0 (Q) � R satisfies∫
Q\Qk0

(|u(x, t)|2 + |∇u(x, t)|2) dx � ε, ∀ t � T2,

where k0 depends on (ν,Q, g) and ε, T2 depends on (ν,Q, g), ε and R.
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Proof. Take a smooth function φ such that 0 � φ � 1 for all s ∈ R and

φ(s) =
{

0, if |s| < 1,

1, if |s| > 2.
(2.17)

Multiplying (2.1) by φ2
( x2

3
k2

)
u(x, t) and then integrating with respect to x on Q, we get∫

Q

utφ
2

(
x2

3

k2

)
u dx −

∫
Q

�utφ
2

(
x2

3

k2

)
u dx − ν

∫
Q

�uφ2

(
x2

3

k2

)
u dx

+
∫

Q

(∇ · �F(u))φ2

(
x2

3

k2

)
u dx =

∫
Q

gφ2

(
x2

3

k2

)
u dx. (2.18)

We now estimate each term in (2.18). Note that the first term on the left-hand side of (2.18)
is given by ∫

Q

utφ
2

(
x2

3

k2

)
u dx = 1

2

d

dt

∫
Q

φ2

(
x2

3

k2

)
u2 dx, (2.19)

and the second term is given by

−
∫

Q

�ut φ
2

(
x2

3

k2

)
u dx =

∫
Q

(∇ut · ∇u)φ2

(
x2

3

k2

)
dx +

∫
Q

u

(
∇ut · ∇φ2

(
x2

3

k2

))
dx

= 1

2

d

dt

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx +

∫
Q

u

(
∇ut · ∇φ2

(
x2

3

k2

))
dx.

(2.20)

For the third term on the left-hand side of (2.18) we have

−ν

∫
Q

�uφ2

(
x2

3

k2

)
u dx = ν

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx + ν

∫
Q

(
∇u · ∇φ2

(
x2

3

k2

))
u dx. (2.21)

The last term on the left-hand side of (2.18) can be written as∫
Q

(∇ · �F(u))φ2

(
x2

3

k2

)
u dx = −

∫
Q

( �F(u) · ∇u)φ2

(
x2

3

k2

)
dx −

∫
Q

(
�F · ∇φ2

(
x2

3

k2

))
u dx.

(2.22)

It follows from (2.18)–(2.22) that

1

2

d

dt

(∫
Q

φ2

(
x2

3

k2

)
(|u|2 + |∇u|2) dx

)
+ ν

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx

= −
∫

Q

(
∇ut · ∇φ2

(
x2

3

k2

))
u dx − ν

∫
Q

(
∇u · ∇φ2

(
x2

3

k2

))
u dx

+
∫

Q

( �F(u) · ∇u)φ2

(
x2

3

k2

)
dx +

∫
Q

(
�F(u) · ∇φ2

(
x2

3

k2

))
u dx

+
∫

Q

φ2

(
x2

3

k2

)
gu dx. (2.23)

We now estimate the right-hand side of (2.23). The first term on the right-hand side of (2.23)
is bounded by
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∫

Q

(
∇ut · ∇φ2

(
x2

3

k2

))
u dx

∣∣∣∣ �
∫

Q

|∇ut |
∣∣∣∣2φ φ′

(
x2

3

k2

)∣∣∣∣ 2|x3|
k2

|u| dx

�
∫

k�|x3|�
√

2k

|∇ut |
∣∣∣∣2φ φ′

(
x2

3

k2

)∣∣∣∣ 2|x3|
k2

|u| dx

� c

k

∫
k�|x3|�

√
2k

|∇ut ||u| dx

� c

k

∫
Q

|∇ut ||u| dx � c

k
‖∇ut‖‖u‖ � c

k
, ∀ t � T , (2.24)

where we have used lemmas 2.1 and 2.2. Similarly, for the second term on the right-hand side
of (2.23) we have, for t � T ,

ν

∣∣∣∣
∫

Q

(
∇u · ∇φ2

(
x2

3

k2

))
u dx

∣∣∣∣ � ν

∫
Q

|∇u||2φ|
∣∣∣∣φ′

(
x2

3

k2

)∣∣∣∣
∣∣∣∣2x3

k2

∣∣∣∣ |u| dx

� ν

∫
k�|x3|�

√
2k

|∇u||2φ|
∣∣∣∣φ′

(
x2

3

k2

)∣∣∣∣
∣∣∣∣2x3

k2

∣∣∣∣ |u| dx

� c

k

∫
k�|x3|�

√
2k

|∇u||u| dx � c

k
‖∇u‖‖u‖ � c

k
. (2.25)

The third term on the right-hand side of (2.23) is bounded by∣∣∣∣
∫

Q

( �F(u) · ∇u)φ2

(
x2

3

k2

)
dx

∣∣∣∣ =
∣∣∣∣
∫

Q

(∇ �G(u))φ2

(
x2

3

k2

)
dx

∣∣∣∣
=

∣∣∣∣
∫

Q

�G(u) · ∇φ2

(
x2

3

k2

)
dx

∣∣∣∣
�

∫
Q

∣∣∣∣ �G(u)‖2φ‖φ′
(

x2
3

k2

)∣∣∣∣ |2x3|
k2

dx

�
∫

k�|x3|�
√

2k

∣∣∣∣ �G(u)‖2φ‖φ′
(

x2
3

k2

)∣∣∣∣ |2x3|
k2

dx

� c

k

∫
Q

| �G(u)| dx

� c

k

(‖u‖2 + ‖u‖m+2
m+2

)
� c

k

(‖u‖2 + ‖u‖m+2
H 1

)
� c

k
, ∀ t � T ,

(2.26)

where we have used (2.16) and lemma 2.1. We now estimate the fourth term on the right-hand
side of (2.23) as follows:∣∣∣∣
∫

Q

(
�F(u) · ∇φ

(
x2

3

k2

))
u dx

∣∣∣∣ �
∫

Q

| �F(u)|
∣∣∣∣2φφ′

(
x2

3

k2

)∣∣∣∣ 2|x3|
k2

|u| dx

�
∫

k�|x3|�
√

2k

| �F(u)|
∣∣∣∣2φφ′

(
x2

3

k2

)∣∣∣∣ 2|x3|
k2

|u| dx

� c

k

∫
Q

| �F(u)||u| dx � c

k

∫
Q

(|u|2 + |u|m+2) dx

� c

k

(‖u‖2 + ‖u‖m+2
m+2

)
� c

k

(‖u‖2 + ‖u‖m+2
H 1

)
� c

k
, (2.27)

for all t � T . The last term on the right-hand side (2.23) is bounded by, for all t � T ,
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∫

Q

φ2

(
x2

3

k2

)
gu dx

∣∣∣∣ =
∣∣∣∣
∫

|x3|�k

φ2

(
x2

3

k2

)
g(x)u(x) dx

∣∣∣∣
�

(∫
|x3|�k

|u(x)|2 dx

) 1
2
(∫

|x3|�k

φ4

(
x2

3

k2

)
g2(x) dx

) 1
2

� ‖u‖
(∫

|x3|�k

g2(x) dx

) 1
2

� c

(∫
|x3|�k

g2(x) dx

) 1
2

. (2.28)

Finally, it follows from (2.23)–(2.28) that, for t � T ,

d

dt

(∫
Q

φ2

(
x2

3

k2

)
(|u|2 + |∇u|2) dx

)
+ 2ν

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx

� c

k
+ c

(∫
|x3|�k

g2(x) dx

) 1
2

. (2.29)

In order to apply Gronwall’s lemma to (2.29), we need to deal with the second term on the
left-hand side again. Note that, for t � T ,∫

Q

∣∣∣∣∇
(

φ

(
x2

3

k2

)
u

)∣∣∣∣
2

dx =
∫

Q

∣∣∣∣u∇φ

(
x2

3

k2

)
+ φ

(
x2

3

k2

)
∇u

∣∣∣∣
2

dx

� 2
∫

Q

|u|2
∣∣∣∣∇φ

(
x2

3

k2

)∣∣∣∣
2

dx + 2
∫

Q

∣∣∣∣φ
(

x2
3

k2

)∣∣∣∣
2

|∇u|2 dx

� 2
∫

k�|x3|�
√

2k

|u|2
∣∣∣∣φ′

(
x2

3

k2

)∣∣∣∣
2 |2x3|2

k4
dx + 2

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx

� c

k2

∫
Q

|u|2 dx + 2
∫

Q

φ2

(
x2

3

k2

)
|∇u|2 dx

� c

k2
+ 2

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx. (2.30)

Since u ∈ H 1
0 (Q) we have φ2

( x2
3

k2

)
u ∈ H 1

0 (Q) and hence by (2.6) and (2.30) we get∥∥∥∥φ

(
x2

3

k2

)
u

∥∥∥∥
2

� λ2

∥∥∥∥∇
(

φ

(
x2

3

k2

)
u

)∥∥∥∥
2

� λ2c

k2
+ 2λ2

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx,

i.e.,

1

2λ2

∫
Q

φ2

(
x2

3

k2

)
u2 dx − c

2k2
�

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx.

Then we find that

2ν

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx � ν

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx +

ν

2λ2

∫
Q

φ2

(
x2

3

k2

)
u2 dx − cν

2k2
. (2.31)

By (2.29) and (2.31) we obtain, for t � T ,

d

dt

(∫
Q

φ2

(
x2

3

k2

)
(|u|2 + |∇u|2) dx

)
+ ν

∫
Q

φ2

(
x2

3

k2

)
|∇u|2 dx +

ν

2λ2

∫
Q

φ2

(
x2

3

k2

)
u2 dx

� cν

2k2
+

c

k
+ c

(∫
|x3|�k

g2(x) dx

) 1
2

.
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Let α = min
(
ν, ν

2λ2

)
. We get, for t � T ,

d

dt

(∫
Q

φ2

(
x2

3

k2

)
(|u|2 + |∇u|2) dx

)
+ α

∫
Q

φ2

(
x2

3

k2

)
(|u|2 + |∇u|2) dx

� c

k
+

c

k2
+ c

(∫
|x3|�k

g2(x) dx

) 1
2

. (2.32)

Since g ∈ L2(Q), the right hand side of (2.23) goes to zero as k → ∞, and hence there is
k1 > 0, such that for every k � k1, and t � T , the following holds:

d

dt

(∫
Q

φ2

(
x2

3

k2

)
(|u|2 + |∇u|2) dx

)
+ α

∫
Q

φ2

(
x2

3

k2

)
(|u|2 + |∇u|2) dx < ε.

By Gronwall’s lemma we obtain, for k � k1, and t � T ,∫
Q

φ2

(
x2

3

k2

)
(|u(t)|2 + |∇u(t)|2) dx � e−α(t−T )

(∫
Q

φ2

(
x2

3

k2

)
(|u(T )|2 + |∇u(T )|2 dx

)
+

ε

α

� e−α(t−T )‖u(T )‖2
H 1 +

ε

α
� e−α(t−T )M2 +

ε

α
� 2ε

α
,

(2.33)

for all t � T ∗, where T ∗ = T − 1
α

ln ε
αM2 . Note that (2.33) implies, for k � k1 and t � T ∗,∫

|x3|�
√

2k

(|u(t)|2 + |∇u(t)|2) dx � 2ε

α
,

and then lemma 2.3 follows immediately. This completes the proof. �

In order to get the asymptotic compactness of the solution operator, we also need to
establish the uniform estimates of the solutions on bounded domains. To this end, we define
ψ = 1 − φ where φ is the function given in (2.17). Fix k � 1 and let v(x, t) = ψ

( x2
3

k2

)
u(x, t).

Then by lemma 2.1 we have v ∈ H 1
0 (Q2k) and

‖v(t)‖H 1
0 (Q2k)

� c, ∀ t � T , (2.34)

where c is a positive constant independent of k. Note that

vt = ψut , (2.35)

�v = (�ψ)u + 2∇ψ · ∇u + ψ�u, (2.36)

�vt = (�ψ)ut + 2∇ψ · ∇ut + ψ�ut . (2.37)

By (2.36) and (2.37) we find that

ψ�u = �v − u�ψ − 2∇ψ · ∇u (2.38)

and

ψ�ut = �vt − ut�ψ − 2∇ψ · ∇ut . (2.39)

Multiplying (2.1) by ψ we obtain

ψut − ψ�ut − νψ�u + ψ∇ · �F(u) = ψg. (2.40)

Substituting (2.35), (2.38) and (2.39) into (2.40) we get

vt − �vt − ν�v = ψg − ψ∇ · �F(u) − ut�ψ − νu�ψ − 2∇ψ · ∇ut − 2ν∇ψ · ∇u.

(2.41)
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Consider the eigenvalue problem:

−�u = λu in Q2k, u|∂Q2k
= 0. (2.42)

Then problem (2.42) has a family of eigenfunctions {ωj }∞j=1 with corresponding eigenvalues
{λj }∞j=1 such that {ωj }∞j=1 is an orthonormal basis of L2(Q2k) and

λ1 � λ2 � · · · � λj → ∞ as j → ∞.

Given n, let Xn = span{ω1, . . . , ωn} and Pn : L2(Q2k) → Xn be the projection operator. We
now establish the following estimates.

Lemma 2.4. Suppose g ∈ L2(Q) and (2.4) is satisfied. Then for every ε > 0 and k � 1, there
exists N, depending on k and ε, such that for all n � N ,

‖(I − Pn)v(t)‖H 1
0 (Q2k)

� ε, ∀ t � T ,

where T depends on (ν,Q, g), k, ε and R when ‖u0‖H 1
0

� R.

Proof. Let v = vn,1 + vn,2 where vn,1 = Pnv and vn,2 = v − vn,1. Applying I − Pn to (2.41)
and then taking the inner product of resulting equation with vn,2 in L2(Q2k) we get

1

2

d

dt
(‖vn,2‖2 + ‖∇vn,2‖2) + ν‖∇vn,2‖2 = (H(u), vn,2), (2.43)

where H(u) is the right-hand side of (2.41) , i.e.

H(u) = ψg − ψ∇ · �F(u) − ut�ψ − νu�ψ − 2∇ψ · ∇ut − 2ν∇ψ · ∇u. (2.44)

We now estimate the right-hand side of (2.43). Note that the nonlinear term in (H(u), vn,2) is
bounded by

|(ψ∇ · �F(u), vn,2)| =
∣∣∣∣∣
∫

Q2k

ψ

(
x2

3

k2

) (
3∑

k=1

F
′
k(u) · ∂u

∂xk

)
vn,2 dx

∣∣∣∣∣
� c

∫
Q2k

3∑
k=1

|fk(u)||∇u||vn,2| dx

� c

∫
Q2k

|∇u||vn,2| dx + c

∫
Q2k

|u|m|∇u||vn,2| dx

� c‖∇u‖‖vn,2‖ + c‖∇u‖‖u‖m
6 ‖vn,2‖s , (2.45)

where s = 6
3−m

. The second inequality above is obtained by (2.5), and the last one by Holder
inequality due to 1

2 + 1
s

+ m
6 = 1. On the other hand, by the Nirenberg–Gagliardo inequality

‖w‖s � c‖w‖θ
H 1‖w‖1−θ ,

where θ = m
2 ∈ [0, 1), we find that

‖vn,2‖s � c‖vn,2‖θ
H 1‖vn,2‖1−θ � cλ

1
2 (θ−1)

n+1 ‖vn,2‖H 1 � cλ
1
2 (θ−1)

n+1 ‖∇vn,2‖. (2.46)

It follows from (2.45) and (2.46) and lemma 2.1 that, for all t � T ,

|(ψ∇ · �F(u), vn,2)| � c‖∇u‖‖vn,2‖ + c‖∇u‖‖u‖m
H 1λ

1
2 (θ−1)

n+1 ‖∇vn,2‖
� c‖vn,2‖ + cλ

1
2 (θ−1)

n+1 ‖∇vn,2‖ � cλ
− 1

2
n+1‖∇vn,2‖ + cλ

1
2 (θ−1)

n+1 ‖∇vn,2‖
� ν

8
‖∇vn,2‖2 + c

(
λ−1

n+1 + λ
−(1−θ)
n+1

)
. (2.47)
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We now use lemma 2.2 to estimate the term (ut�ψ, vn,2). Note that, for t � T ,

|(ut�ψ, vn,2)| =
∣∣∣∣
∫

Q2k

utvn,2

(
2

k2
ψ ′

(
x2

3

k2

)
+

4x2
3

k4
ψ ′′

(
x2

3

k2

))
dx

∣∣∣∣
� c

k2

∫
Q2k

|ut ||vn,2| dx � c

k2
‖ut‖‖vn,2‖ � c

k2
‖vn,2‖

� c

k2
λ

− 1
2

n+1‖∇vn,2‖ � ν

8
‖∇vn,2‖2 + cλ−1

n+1. (2.48)

Similar to (2.48), all other terms in (H(u), vn,2) are also bounded by 1
8ν‖∇vn,2‖2 + cλ−1

n+1,
which along with (2.43), (2.47) and (2.48) implies that, for all t � T ,

d

dt
(‖vn,2‖2 + ‖∇vn,2‖2) + ν‖∇vn,2‖2 � cλ−1

n+1 + cλ
−(1−θ)
n+1 . (2.49)

Since 1 − θ > 0 and λn → ∞ , given ε > 0, there is N = N(ε) such that for an n � N :

λn � 1 and cλ−1
n+1 + cλ

−(1−θ)
n+1 < ε. (2.50)

By (2.49) and (2.50) we get that, for all n � N and t � T ,

d

dt
(‖vn,2‖2 + ‖∇vn,2‖2) + ν‖∇vn,2‖2 � ε. (2.51)

Note that

ν‖∇vn,2‖2 � ν

2
‖∇vn,2‖2 +

ν

2
λn+1‖vn,2‖2 � ν

2
(‖vn,2‖2 + ‖∇vn,2‖2),

which along with (2.51) shows that for n � N :

d

dt
‖vn,2‖2

H 1 +
1

2
ν‖vn,2‖2

H 1 � ε, ∀ t � T .

By Gronwall’s lemma, we find that, for all n � N and t � T ,

‖vn,2(t)‖2
H 1(Q2k)

� e− 1
2 ν(t−T )‖vn,2(T )‖2

H 1 +
2ε

ν
,

� e− 1
2 ν(t−T )‖v(T )‖2

H 1 +
2ε

ν
� ce− 1

2 ν(t−T ) +
2ε

ν
� 3ε

ν
,

for all t � T − 2
ν

ln ε
νc

. This completes the proof. �

Lemma 2.5. Suppose g ∈ L2(Q) and (2.4) is satisfied. Let {u0,l}∞l=1 be bounded in H 1
0 (Q)

and tl → ∞ as l → ∞ . If ul(t) is the solution of problem (2.1)–(2.3) with the initial condition
u0,l , and

vl(x, t) = ψ

(
x2

3

k2

)
ul(x, t), l = 1, 2, . . . , (2.52)

where k � 1 is fixed. Then the sequence {vl(tl)}∞l=1 has a convergent subsequence in H 1
0 (Q).

Proof. Since {u0,l} is bounded in H 1
0 (Q), there is a positive constant c such that

‖u0,l‖H 1
0 (Q) � c, l = 1, 2, . . . . (2.53)

By (2.53) and lemma 2.1 we find that there is T1 > 0 such that for all t � T1:

‖ul(t)‖H 1
0 (Q) � c, l = 1, 2, . . . . (2.54)

Since tl → ∞, there is L > 0 such that tl � T1 for all l � L, and hence by (2.54) we have

‖ul(tl)‖H 1
0 (Q) � c, ∀ l � L. (2.55)
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By (2.52) and (2.55) we get

‖vl(tl)‖H 1
0 (Q) � c, ∀ l � L. (2.56)

Note that vl(x, t) = 0 for x /∈ Q2k . Therefore (2.56) implies that

‖vl(tl)‖H 1
0 (Q2k)

� c, ∀ l � L. (2.57)

Given ε > 0, by lemma 2.4 there are N = N(k, ε) and T2 = T2(k, ε) such that

‖(I − PN)vl(t)‖H 1
0 (Q2k)

� ε

3
, ∀ t � T2. (2.58)

Since tl → ∞ , there is L1 > 0 such that tl � T2 for all l � L1. In this case we obtain
from (2.58) that

‖(I − PN)vl(tl)‖H 1
0 (Q2k)

� ε

3
, ∀ t � T2. (2.59)

Let L3 = max{L,L1}. Then by (2.57) we find that {PNvl(tl)}∞l=L3
is bounded in the finite-

dimensional space PNH 1
0 (Q2k) and hence is precompact. In other words, for the given ε , there

is a finite subset
{
vl1(tl1) · · · vlr

(
tlr

)}
of {vl(tl)}∞l=L3

such that
{
PNvl1

(
tl1

) · · · PNvlr

(
tlr

)}
is an

ε
3 -net of {PNvl(tl)}∞l=L3

in PNH 1
0 (Q2k), which along with (2.59) shows that

{
vl1

(
tl1

) · · · vlr

(
tlr

)}
is an ε-net of {vl(tl)}∞l=L3

in H 1
0 (Q2k). Note that vl(x, tl) = 0 for x /∈ Q2k and hence{

vl1
(
tl1

) · · · vlr

(
tlr

)}
is also an ε-net of {vl(tl)}∞l=L3

in H 1
0 (Q), that is, for every ε > 0, the

sequence {vl(tl)}∞l=1 has a finite ε-net in H 1
0 (Q). Therefore, {vl(tl)}∞l=1 is precompact in

H 1
0 (Q). This completes the proof. �

3. Existence of global attractors

In this section, we prove the existence of global attractors for problem (2.1)–(2.3) in H 1
0 (Q).

To this end, we need to establish the asymptotic compactness of the solution operator which
is stated as follows.

Lemma 3.1. Suppose g ∈ L2(Q) and (2.4) is satisfied. Let {u0,l}∞l=1 be bounded in H 1
0 (Q)

and tl → ∞. Then {S(tl)u0,l} has a convergent subsequence in H 1
0 (Q).

Proof. Let ul(t) = S(t)u0,l . Since {u0,l} is bounded in H 1
0 (Q), there is R > 0 such that

‖u0,l‖H 1
0 (Q) � R, l = 1, 2, . . . . (3.1)

Then by lemma 2.3, given ε > 0, there are k0 and T1 such that∫
Q\Qk0

(|ul(t)|2 + |∇ul(t)|2) dx � ε, ∀ t � T1. (3.2)

Since tl → ∞, there is L1 > 0 such that tl � T1 for all l � L1, and hence by (2.51) we get∫
Q\Qk0

(|ul(tl)|2 + |∇ul(tl)|2) dx � ε, ∀ l � L1. (3.3)

Denote by

vl(x, t) = ψ

(
x2

3

k2
0

)
ul(x, t).

Then by lemma 2.5, {vl(tl)} has a convergent subsequence
{
vln(tln )

}
in H 1

0 (Q). Note that{
vln(tln )

}
is a Cauchy sequence in H 1

0 (Q) and hence also a Cauchy sequence in H 1
0

(
Qk0

)
. By

definition, vln

(
tln

) = uln

(
tln

)
on Qk0 and therefore

{
uln

(
tln

)}
is a Cauchy sequence in H 1

(
Qk0

)
,
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which along with (3.3) shows that
{
uln

(
tln

)}
is a Cauchy sequence in H 1

0 (Q). This completes
the proof. �

We are now ready to prove the existence of a global attractor for the Benjamin–Bona–
Mahony equation.

Theorem 3.2. Suppose g ∈ L2(Q) and (2.4) is satisfied. Then problem (2.1)–(2.3) has a
global attractor A in H 1

0 (Q), which is compact and invariant and attracts every bounded set
with respect to the norm of H 1

0 (Q).

Proof. By lemma 2.1, the dynamical system {S(t)}t�0 has a bounded absorbing set in H 1
0 (Q),

and by lemma 3.1, {S(t)}t�0 is asymptotically compact. Then the existence of a global
attractor follows immediately from the standard attractor theory (see, e.g., [7, 8, 21, 30, 33,
36]). The proof is complete. �

4. Discussion

In this paper, we have proved the existence of a global attractor for the Benjamin–Bona–
Mahony equation defined in a three-dimensional unbounded channel. The attractor is a
compact subset of the phase space which is invariant and attracts all solutions when time goes
to infinity. This implies that the permanent states of the physical system after a short transient
period are governed by the global attractor. The existence and the complicated structure of the
global attractor are responsible for the chaotic and turbulent behavior of the flow described
by the Benjamin–Bona–Mahony equation. Studying the dynamical behavior of the flow on
the global attractor is a necessary step for better understanding the turbulent mechanism of
the physical system. The structure of the global attractor not only determines the chaotic
behavior of the flow, but also determines the level of complexity of the physical phenomena.
The global attractor obtained in this paper is compact and invariant, and hence, its fractal
dimension is likely to be finite. The dimension of the attractor will be addressed in future
work. If the attractor is finite-dimensional, then the turbulent motion of the flow will be
governed by a finite number of degrees of freedom, and in this case, we may reduce the study
of the infinite-dimensional flow to a finite-dimensional system.
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